OROFACIAL FINDINGS AND DENTAL CARE MANAGEMENT IN A PATIENT WITH ROBINOW SYNDROME

Marina Fernandes Sena,¹ Paôla Caroline da Silva Mira,¹ Thais Tedeschi dos Santos,¹ Carolina Paes Torres,¹ Francisco Wanderley Garcia Paula-Silva,¹ Fábio Lourenço Romano,¹ Sandra Maria Garcia da Silveira,¹ Karina. Mayra de Queiroz Brito,¹ Alexandra Mussolino de Queiroz,¹

¹Department of Children’s Clinic, School of Pediatric Dentistry of Ribeirão Preto-USP, Ribeirão Preto, SP, Brazil.

Submitted: July 2, 2019
Modification: September 16, 2019
Accepted: September 17, 2019

*Correspondence to:
Francisco Wanderley Garcia Paula-Silva
Telephone number: 55 (16) 3315-3995.
E-mail: franciscogarcia@forp.usp.br

Keywords: Robinow Syndrome. Disabled Children. Dental Care.

RESUMO
Introdução: A síndrome de Robinow é uma doença genética rara caracterizada por baixa estatura, dismorfismos faciais e anomalias orodentais, genitália subdesenvolvida e falhas no desenvolvimento esquelético. Relato de Caso: Uma paciente de 6 anos com Síndrome de Robinow foi encaminhada ao Centro de Formação de Recursos Humanos Especializado no Atendimento Odontológico de Pacientes com Necessidades Especiais (Ribeirão Preto, São Paulo, Brasil). Na investigação da história médica e ao exame clínico foram observados baixa estatura, dismorfismo facial e genitália hipoplásica. Os achados orofaciais mostraram retrognatismo, hemangioma de linha média de aproximadamente 1 cm de largura com bordas voltadas para cima, língua bífida, anquiloglossia, hipertrofia gengival geral, mordida profunda e apinhamento dentário leve. A anormalidade cardíaca e o atraso no desenvolvimento neuromotor demandaram cuidados individualizados. O tratamento odontológico consistiu em procedimentos preventivos e restauradores para adequar a condição de saúde bucal da paciente. Além disso, foi realizada avaliação ortodôntica e planejamento do tratamento. A paciente está em acompanhamento há seis anos. Conclusão: Anomalias orofaciais e outras alterações encontradas no presente caso contribuíram para complementar os achados orofaciais na literatura e auxiliar no diagnóstico da síndrome. Neste caso, um plano de tratamento integral e equipe multiprofissional foram essenciais para resgatar a saúde bucal e propiciar melhor qualidade de vida à paciente.

ABSTRACT
Introduction: Robinow syndrome is a rare genetic disorder of skeletal development. It is characterized by short stature, facial dysmorphisms and orodental anomalies, underdeveloped genitalia, mesomelic brachymelia. Case Report: A 6 year old girl with Robinow Syndrome was referred in the Center for Formation of Human Resources Specialized in Dental Care to Special Needs Patients (Ribeirão Preto, São Paulo, Brazil) for evaluation. Medical history investigation and clinical examination were observed in short stature, facial dimorphism and hypoplastic genitalia. Orofacial findings showed retrognathism, a mid-line hemangioma approximately 1 cm wide with upturned borders, bifid tongue, ankyloglossia, general gingival hypertrophy, deep bite and mild tooth crowding. Cardiac abnormality and neuromotor developmental delay consisted of systemic manifestations present which demanded individualized dental care. The dental treatment consisted of preventive and restoratives procedures to adequate the oral health condition of the patient and orthodontic treatment was planned. The patient has been in follow-up for six years. Conclusion: Orofacial anomalies and other alterations found in the present case contributed to complement the orofacial findings described in the literature and to assist in diagnosis of the syndrome. In this case, amultiprofessional team and integral treatment were essential to rescue oral health and improvelife quality of the patient.
INTRODUCTION

Robinow syndrome (RS) was first described in 1969 by Robinow et al. Epidemiological data indicate occurrence in approximately 1:500,000 births with no gender predilection.
Researchers have identified two types of RS, which are distinguished by their patterns of inheritance and the severity of their signs and symptoms: autosomal dominant (OMIM #180700) and autosomal recessive (OMIM #268310). The diagnosis of RS is based mainly on the observation of typical clinical features like short stature, facial dysmorpohisms and hypoplastic genitalia.

Patients with RS present several craniofacial and orodental alterations such as frontal bossing, bulging or wide forehead, midfacial hypoplasia, hypertelorism, gingival hypertrophy, micrognathia, retrognathia, missing teeth, bilobed tongue tip. The signs of both types of RS are similar, but tend to be more severe in the autosomal recessive form, including a more evident dwarfism and typical vertebral and rib segmentation anomalies, such as hemivertebrae with fused ribs leading to kyphoscoliosis.

Craniofacial findings are more significant in the recessive form whereas orodental features are more common in the dominant form.

The prognosis of RS is unfavorable, especially for the patients with heart problems. The treatment includes surgeries for treating hernias, vertebral anomalies and scoliosis, orthodontic procedures for correction of dental malocclusions, face reconstruction, psychotherapy and even growth hormone therapy in some cases.

This report presents the case of a pediatric patient diagnosed with RS. The clinical features are described, with emphasis on the orodental findings and dental treatment performed in an outpatient dental service.

CASE REPORT

A 6-year-old female child was referred for general dental treatment at the Center for Formation of Human Resources Specialized in Dental Care to Special Needs Patients, School of Dentistry of Ribeirão Preto, University of São Paulo, Brazil.

During the clinical interview, the mother revealed an uneventful pregnancy, with normal ultrasound scans and results to laboratory tests within normal ranges. Between the third and fourth months the mother used procaine benzylpenicillin, dimenhydrinate and sodium dipyrone. She smoked one pack of cigarettes per day and was under continuous use of ranitidine hydrochloride. The child was born at term by cesarean delivery weighing 2,860 g and measuring 44 cm, with 34 cm cephalic perimeter and 5/9

The child had normal karyotype of 46 XX, and showed underdeveloped genitalia, focus of left parietal demyelination and discrete signs of cerebellum atrophy and moderate bilateral hearing loss.

Thus, general clinical examination revealed mesomelic shortening of the upper limbs, with small hands, strong ligament laxity, muscular hypotonia, brachycephaly, bilateral clinodactyly of the fifth fingers, and transversal palmar crease on the right hand (Figure 1A, 1B, 1C).

The craniofacial and orodental characteristics revealed very dispersed hair, low-set ears, frontal bossing, shallow eyebrows, “fetal face”, square nose tip, wide nose bottom, erased philtrum, thin lips, triangle-shaped mouth, retrognathism, a mid-line hemangioma approximately 1 cm wide with upturned borders, bifid tongue, ankyloglossia, general gingival hypertrophy, deep bite and mild tooth crowding (Figure 1B, 1D, 1E, 1F).

Initial radiographic examinations revealed early tooth losses due to the extensive carious lesions (Figure 2A). A panoramic radiograph showed the presence of all permanent teeth, supernumerary tooth in the region of the tooth 17 and the upper and lower third molar undergoing coronary formation (Figure 2B). Also, in the oral examination, the patient presented inflammation gingival and accumulation of biofilm in the upper and lower dental arch.

A two-phase treatment was planned for this case. In the first phase, preventive measures were applied. The second phase was surgical and restorative. Teeth 64, 71, 74 and 81 were not restorable and were extracted. Teeth 16, 26, 62, 63, 75 and 85 were restored.

Due to the patient’s heart problems, a prophylactic antibiotic regimen was prescribed prior to the dental procedures, with 50 mg of Amoxilin per kg body weight taken 1 hour before the procedure.

There was moderate mental retardation associated with uncooperative behavior. After a few modulating sessions employing the basic behavior guidance, physical restraint measures were used after parental consent by signing the consent form.

After completion of the dental treatment, the patient was referred to orthodontic treatment, which it is in initial phase. The diagnosis and treatment orthodontic plan were performed after the clinical examination and documentation orthodontic analysis. By analyzing facial features, the patient

Oral findings of Robinow Syndrome
Sena et al.
Oral findings of Robinow Syndrome
Sena et al.

Figure 1: Patient at 6-year-old during treatment. (A) Frontal view of the patient. (B) Lateral view of the patient where it can be observed low-set ears, frontal bossing, and retrognathism. (C) Bilateral clinodactyly of the fifth fingers. (D) Intra-oral view where it can be observed high palate. (E) Presence of mild tooth crowding. (F) Presence of mild ankyloglossia.

Figure 2: (A) Patient at 7-year-old, initial radiographic examination. (B) Patient at 11-year-old, actual radiographic examination.
Figure 3: Patient at 11-year-old. (A) Lateral view of the patient with the presence of lower third increased, convex profile, nasolabial acute angle, decreased chin-neck line, absence of lip seal. (B) Frontal view of the patient which it can be observed facial asymmetric. (C) Frontal view of the patient which it can be observed facial asymmetric while smiling. (D) Maxillary arch. (E) Mandibular arch. (F), (G) and (H) Malocclusion Class II, Angle division 1 deep overbite, overjet of 7 mm, coincident upper midline and lower midline 1 mm deviated to the left, gingival hypertrophy.

Figure 4: Patient at 11-year-old. (A) Lateral teleradiographic examination. (B) Cephalometric analysis.
Table 1: Craniofacial and orodental manifestations: bibliographic survey

<table>
<thead>
<tr>
<th>Craniofacial</th>
<th>Orodental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontal bossing2, 8, 18, 28, 29, 33</td>
<td>Triangular mouth (bottom corners face downward)16, 28, 29, 33</td>
</tr>
<tr>
<td>Bulging or wide forehead 16, 17, 28, 33</td>
<td>Broad mouth8</td>
</tr>
<tr>
<td>Hemangioma8, 16</td>
<td>High palate6, 10, 11, 28, 29</td>
</tr>
<tr>
<td>Flat facial profile with large head (macrocephaly not necessarily associated with hydrocephaly)10, 28</td>
<td>Long/short philtrum (tented upper lip, inverted “V” philtrum)2, 8, 11, 16, 17, 25</td>
</tr>
<tr>
<td>Midfacial hypoplasia8, 10, 28, 29</td>
<td>Dental abnormalities, misaligned teeth (crowded, missing teeth)2, 9, 10, 11, 17, 28, 29, 33</td>
</tr>
<tr>
<td>Hypertelorism2, 8, 16, 17, 25, 28, 29, 33</td>
<td>Gingival hypertrophy8-11, 16, 17, 28</td>
</tr>
<tr>
<td>Wide palpebral fissures7</td>
<td>Abnormal uvula (heart shaped)7, 9, 28</td>
</tr>
<tr>
<td>Downsizing palpebral fissures7-29</td>
<td>Absent uvula16</td>
</tr>
<tr>
<td>Lower lid deficiency (pseudoexophthalmos)7</td>
<td>Cleft lip/palate (non midline)2, 8, 16, 15</td>
</tr>
<tr>
<td>Ear abnormality, small and lower set8, 17, 29</td>
<td>Bifid tongue (bilobed tongue tip)10, 16, 18, 28, 29</td>
</tr>
<tr>
<td>Right pre-auricular pit16</td>
<td>Ankyloglossia3, 10, 16, 28, 29</td>
</tr>
<tr>
<td>Micrognathia8, 10, 29</td>
<td>Microdontia8</td>
</tr>
<tr>
<td>Retrorgenhia8, 11, 18</td>
<td>Crowded tooth buds8</td>
</tr>
<tr>
<td>Prominent eyes with bilateral proptosis2, 8, 11, 16, 18, 28, 29, 33</td>
<td>Delayed tooth eruption and exfoliation10, 16, 18, 28, 29</td>
</tr>
<tr>
<td>Epicanthal folds2, 11</td>
<td>Short roots primary molars16</td>
</tr>
<tr>
<td>Flat-saddle nose8</td>
<td>Trapezoid maxillary arch16</td>
</tr>
<tr>
<td>Upturned nose with depressed nasal bridge11, 16, 18, 28, 29, 33</td>
<td>Narrow and thick-floored pulp chambers16</td>
</tr>
<tr>
<td>Short nose2, 18, 25, 28</td>
<td>Down-slanted mouth corners2, 11</td>
</tr>
<tr>
<td>Broad nasal bridge16, 18, 25</td>
<td>Thin upper lip11</td>
</tr>
<tr>
<td>Anteverted nares17, 18, 25, 28</td>
<td>Supernumerary teeth11</td>
</tr>
<tr>
<td>Macrocephaly11, 20, 28, 29</td>
<td></td>
</tr>
<tr>
<td>Posteriorly rotated ears2, 18, 25</td>
<td></td>
</tr>
</tbody>
</table>

At that time, the patient was in the mixed dentition (Figure 3D and 3E) and dental pattern revealed malocclusion Class II, Angle division 1, deep overbite, overjet of 7 mm, coincident upper midline and lower midline 1 mm deviated to the left (Figure 3F, 3G, 3H).

In cephalometric analysis (Figure 4) in the horizontal plane it was possible to verify that the maxilla (SNA = 82°) was well positioned and mandible (SNB = 73°) retruded in relation to the anterior cranial base, showing an skeletal malocclusion class II (ANB = 80°). In the vertical plane the patient had a predominance of mesofacial vertical growth and morphological type (SNGnGn = 41°, NSGn = 70°, Facial axis = 89°). The upper and lower incisors were protruded (1-NA = 7mm, 1-NB = 6mm) and axial inclination increased (1.NA = 32°, 1.NB = 26°).

The patient was referred to extraction of the supernumerary tooth after complete eruption and root formation of the permanent maxillary right second molar. Orthodontic treatment was performed in two phases. In the first phase, Kloeheh headgear was adapted with a parietal traction (high) of 500 gf in each side. The use of the appliance was recommended for 12 hours/day to redirect the maxillary growth and to allow an anterior mandibular growth. The time to use this appliance was of approximately 12 months.

FOLLOW-UP

During puberty, parents were informed about the importance of collaboration for the success of orthodontic treatment, especially during the period of growth. Unfortunately, the parents reported that they could not collaborate and that orthodontic treatment should be interrupted without the corrective phase.

The patient still remains in follow-up, as the child was considered a high-caries-risk patient after completion of the restorative phase. Additionally, supervision of oral homecare.
by the parents was strongly recommended and gingival hypertrophy was not surgically treated because alteration was not severe.

DISCUSSION

RS features can be identified at birth and by ultrasound examination, starting at 19 weeks of gestation. The patient of this case was diagnosed with the recessive form of RS, based on her postnatal characteristics. Although parental consanguinity has an important role in RS etiology, the patient in this case was born to a non-consanguineous couple.

Congenital heart problems are a common finding in individuals with RS, accounting to 16% of the cases reported in the literature and 5 to 10% of the children with RS die prematurely due to heart problems. The patients with RS requires reduction of anxiety (usually evoked by dental treatment) as well as maintenance of adequate oral conditions without infectious foci and administration of prophylactic antibiotics prior to dental procedures for prevention of bacterial endocarditis and supervision of oral homecare for parents.

The patient presented mental retardation, even though normal intelligence is reported in most cases. The neuropsychomotor condition of the patient was an important issue during the dental treatment because she presented unpredictable oscillations of mood, poor understanding of instructions and resistive behavior that are common to individuals with mental retardation.

After a few modulating sessions using resources of behavior management, the patient became more cooperative with dental staff, allowing the treatment without need of sedation or general anesthesia, thus eliminating the risks inherent to general anesthesia procedures and hospital infection, which are increased in patients with cardiovascular problems. In addition, the anatomic characteristics of patients with RS make intubation very difficult.

Patients with RS present several craniofacial and orodental alterations. In this case the syndrome was characterized by the findings that are consistent with other reports in the literature (Table 1).

Besides the orodental examination, this case report evaluated the cephalometric profile of the patient which yet there not report in the literature to Robinow syndrome. The detection of occlusal alterations is important to execute the planning of orthodontic treatment in earlier phase because the improvement in facial appearance in syndromic children is gradually reduced with growth. Further studies are needed to describe the differences in frequency and severity of craniofacial and orodental features and between dominant and recessive forms to be used as clinical pattern in the characterization of the forms of Robinow Syndrome. In this way, it is very important that the dentists describe in detail the craniofacial and orodental findings and to assist in diagnosis in this syndrome, because the facial features are more pronounced in younger subjects than adults. The dental treatment requires that the dentist to be familiar with RS features, as well the performance of integral treatment and multiprofessional team is essential to promote a better life quality to these patients.

Orofacial anomalies and other alterations presented in this case contributed to the orofacial findings described in the literature for diagnosis of Robinow syndrome. In this case, a multiprofessional team and integral treatment were essential to rescue oral health and improve life quality of the patient.

REFERENCES